Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

400-mW single-frequency 660-nm semiconductor laser

Identifieur interne : 015790 ( Main/Repository ); précédent : 015789; suivant : 015791

400-mW single-frequency 660-nm semiconductor laser

Auteurs : RBID : Pascal:00-0207711

Descripteurs français

English descriptors

Abstract

Using an angled-grating broad-area structure in GaInP-Alinp material system, we obtain single spatial and longitudinal-mode operation at 660 nm. The grating stabilizes the mode to deliver over 400-mW continuous-wave at room temperature from a 60-μm-wide stripe. This is about ten times higher than conventional distributed-feedback power output levels, and is the highest single-frequency power from a monolithic semiconductor device in this wavelength range. These devices should be useful for single-mode-fiber coupling and in applications where high-wavelength stability is required, such as spectroscopy, interferometry, or metrology.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0207711

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">400-mW single-frequency 660-nm semiconductor laser</title>
<author>
<name sortKey="Pezeshki, B" uniqKey="Pezeshki B">B. Pezeshki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>SDL Inc</s1>
<s2>San Jose CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hagberg, M" uniqKey="Hagberg M">M. Hagberg</name>
</author>
<author>
<name sortKey="Zelinski, M" uniqKey="Zelinski M">M. Zelinski</name>
</author>
<author>
<name sortKey="Demars, S D" uniqKey="Demars S">S. D. Demars</name>
</author>
<author>
<name sortKey="Kolev, E" uniqKey="Kolev E">E. Kolev</name>
</author>
<author>
<name sortKey="Lang, R J" uniqKey="Lang R">R. J. Lang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0207711</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 00-0207711 EI</idno>
<idno type="RBID">Pascal:00-0207711</idno>
<idno type="wicri:Area/Main/Corpus">013402</idno>
<idno type="wicri:Area/Main/Repository">015790</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1041-1135</idno>
<title level="j" type="abbreviated">IEEE Photonics Technol Lett</title>
<title level="j" type="main">IEEE Photonics Technology Letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Diffraction gratings</term>
<term>Distributed feedback lasers</term>
<term>Laser modes</term>
<term>Optical fiber coupling</term>
<term>Optical waveguides</term>
<term>Quantum well lasers</term>
<term>Reviews</term>
<term>Semiconducting gallium compounds</term>
<term>Semiconducting indium compounds</term>
<term>Semiconductor lasers</term>
<term>Semiconductor waveguides</term>
<term>Single mode fiber coupling</term>
<term>Single mode fibers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Article synthèse</term>
<term>Laser réaction répartie</term>
<term>Composé semiconducteur gallium</term>
<term>Composé semiconducteur indium</term>
<term>Mode laser</term>
<term>Réseau diffraction</term>
<term>Laser puits quantique</term>
<term>Guide onde optique</term>
<term>Couplage fibre optique</term>
<term>Fibre monomode</term>
<term>Laser semiconducteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using an angled-grating broad-area structure in GaInP-Alinp material system, we obtain single spatial and longitudinal-mode operation at 660 nm. The grating stabilizes the mode to deliver over 400-mW continuous-wave at room temperature from a 60-μm-wide stripe. This is about ten times higher than conventional distributed-feedback power output levels, and is the highest single-frequency power from a monolithic semiconductor device in this wavelength range. These devices should be useful for single-mode-fiber coupling and in applications where high-wavelength stability is required, such as spectroscopy, interferometry, or metrology.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1041-1135</s0>
</fA01>
<fA02 i1="01">
<s0>IPTLEL</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE Photonics Technol Lett</s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>400-mW single-frequency 660-nm semiconductor laser</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PEZESHKI (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAGBERG (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZELINSKI (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DEMARS (S. D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KOLEV (E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LANG (R. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>SDL Inc</s1>
<s2>San Jose CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>791-793</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21972</s2>
</fA43>
<fA44>
<s0>A100</s0>
</fA44>
<fA45>
<s0>7 Refs.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0207711</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE Photonics Technology Letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using an angled-grating broad-area structure in GaInP-Alinp material system, we obtain single spatial and longitudinal-mode operation at 660 nm. The grating stabilizes the mode to deliver over 400-mW continuous-wave at room temperature from a 60-μm-wide stripe. This is about ten times higher than conventional distributed-feedback power output levels, and is the highest single-frequency power from a monolithic semiconductor device in this wavelength range. These devices should be useful for single-mode-fiber coupling and in applications where high-wavelength stability is required, such as spectroscopy, interferometry, or metrology.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55A</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>001D03F</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>001D03G02B</s0>
</fC02>
<fC03 i1="01" i2="1" l="ENG">
<s0>Semiconductor waveguides</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="1" l="ENG">
<s0>Single mode fiber coupling</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="1" l="FRE">
<s0>Article synthèse</s0>
</fC03>
<fC03 i1="03" i2="1" l="ENG">
<s0>Reviews</s0>
</fC03>
<fC03 i1="04" i2="1" l="FRE">
<s0>Laser réaction répartie</s0>
</fC03>
<fC03 i1="04" i2="1" l="ENG">
<s0>Distributed feedback lasers</s0>
</fC03>
<fC03 i1="05" i2="1" l="FRE">
<s0>Composé semiconducteur gallium</s0>
</fC03>
<fC03 i1="05" i2="1" l="ENG">
<s0>Semiconducting gallium compounds</s0>
</fC03>
<fC03 i1="06" i2="1" l="FRE">
<s0>Composé semiconducteur indium</s0>
</fC03>
<fC03 i1="06" i2="1" l="ENG">
<s0>Semiconducting indium compounds</s0>
</fC03>
<fC03 i1="07" i2="1" l="FRE">
<s0>Mode laser</s0>
</fC03>
<fC03 i1="07" i2="1" l="ENG">
<s0>Laser modes</s0>
</fC03>
<fC03 i1="08" i2="1" l="FRE">
<s0>Réseau diffraction</s0>
</fC03>
<fC03 i1="08" i2="1" l="ENG">
<s0>Diffraction gratings</s0>
</fC03>
<fC03 i1="09" i2="1" l="FRE">
<s0>Laser puits quantique</s0>
</fC03>
<fC03 i1="09" i2="1" l="ENG">
<s0>Quantum well lasers</s0>
</fC03>
<fC03 i1="10" i2="1" l="FRE">
<s0>Guide onde optique</s0>
</fC03>
<fC03 i1="10" i2="1" l="ENG">
<s0>Optical waveguides</s0>
</fC03>
<fC03 i1="11" i2="1" l="FRE">
<s0>Couplage fibre optique</s0>
</fC03>
<fC03 i1="11" i2="1" l="ENG">
<s0>Optical fiber coupling</s0>
</fC03>
<fC03 i1="12" i2="1" l="FRE">
<s0>Fibre monomode</s0>
</fC03>
<fC03 i1="12" i2="1" l="ENG">
<s0>Single mode fibers</s0>
</fC03>
<fC03 i1="13" i2="1" l="FRE">
<s0>Laser semiconducteur</s0>
<s3>P</s3>
</fC03>
<fC03 i1="13" i2="1" l="ENG">
<s0>Semiconductor lasers</s0>
<s3>P</s3>
</fC03>
<fN21>
<s1>150</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 015790 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 015790 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0207711
   |texte=   400-mW single-frequency 660-nm semiconductor laser
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024